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Radiography is ubiquitous in HED, but analysis is 
typically limited to 1D lineouts
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Side and face-on SBI radiographs 
on Omega. Lineouts used for 
mode analysis. [2]

ISM mass stripping experiment on Omega. 
Observed Widnall instability. Lineout study of 
normalized width/height [1].
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Side and face-on SBI radiographs 
on Omega. Lineouts used for 
mode analysis. [2]

ISM mass stripping experiment on Omega. 
Observed Widnall instability. Lineout study of 
normalized width/height [1].



Using computer vision we can track full 2D interactions 
over time.
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Blue = shock contour
Orange = void contour

Marble VC 16A
Each image = different shot



Computer Vision Techniques
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Why computer vision? 
Semi-automated analysis on small datasets.
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Example radiographs from Marble VC, a platform for 
testing our understanding of SBI in plasmas
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● Complex physics of shock-bubble 
interaction (SBI) provide a strong 
test for theory/simulations
● Compression
● Morphology/mix
● Instabilities

Foam sphere
Sn[15]SiO2[85]
75 mg/cc
195 µm in diameter

La
se

r

Base foam 100 
mg/cc CH

8 beams
500 J/beamV or Ti foil 

backlighter
25 um 
pinhole Shock

XRFC/CIPs
XRFC/MPBL

Shock tube 50 um CH

● Optimized for contrast
● Bubble is lower density than 

ambient (divergent SBI), 
but higher attenuation due 
to dopant

The Marble VC campaign was supported by the Office of Experimental Science Primary Assessment 
Technologies and Secondary Assessment Technologies Programs
The Marble VC campaign was supported by the Office of Experimental Science Primary Assessment 
Technologies and Secondary Assessment Technologies Programs



Marble VC platform produces radiographs of SBI along 
two orthogonal lines of sight
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Using computer vision libraries we extract shock and 
bubble contours from raw radiographs
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● Computer vision 
techniques: 
● Morphological 

filtering cleans hot 
pixels and camera 
artifacts

● Watershed 
segmentation 
retrieves contours

● Reduce bias from 
human input

● Increase 
reproducibility

“Use of computer vision for analysis of image datasets from high temperature plasma experiments” accepted 
to RSI proceedings of the 23rd HTPD conference
“Use of computer vision for analysis of image datasets from high temperature plasma experiments” accepted 
to RSI proceedings of the 23rd HTPD conference



Median and morphological filters remove noise while 
preserving edges
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● Median filters 
remove impulse 
noise

● Morphological filters 
remove “salt and 
pepper” noise and 
small cracks

● Disk kernel of radius 
5 pixels was found 
to be suitable for this 
image set

● General trend of dip 
in intensity at 
shock/bubble does 
not seem distorted



Morphological filters remove small artifacts
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Median/morphological filtering also cleans hot pixels 
and “streaks” inherent to using x-ray framing cameras
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Pseudo-flatfielding removes large lighting variations 
and preserves short scale contrast gradients
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Watershed segments the image based on topological 
features
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Watershed segmentation uses 2D info, and is 
less susceptible to noise/gaps at feature edges
Watershed segmentation uses 2D info, and is 
less susceptible to noise/gaps at feature edges

Input Gradients Markers



Watershed segmentation divides the image like a 
topological map
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[1] E. R. Dougherty. Hands On Morphological Image Processing. SPIE Press (2003).[1] E. R. Dougherty. Hands On Morphological Image Processing. SPIE Press (2003).

● Initiate markers of different regions
● Fill regions, starting from minima, with different colors of water
● Where different colors meet, build a “dam” marking the boundary between 

segments
● Keep filling with water until all peaks are under water



Contours are taken around segment and then indexed 
to relevant portions
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Ridge plots show shock position is identified in middle 
of contrast gradient, when a clear gradient exists
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There are some 
exceptions where 
a 1D lineout would 
breakdown, but 
watershed uses 
2D info to still find 
shock position

Bubble



Experiments and Simulations
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Using computer vision on Marble VC data we can track 
the full 2D interaction over time.
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Blue = shock contour
Orange = void contour Each image = different shot



We can now diagnose symmetry between two lines of 
sight on the same shot
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• 2 lines of sight 
agree!



We can quantitatively track the distortions in the 
bubble over time and from different views
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Simultaneous images of bubbles from two lines of sight enable us to check 
for cylindrical symmetry in the system
Simultaneous images of bubbles from two lines of sight enable us to check 
for cylindrical symmetry in the system

Vorticity 
deposition

Shock 
focusing?
Jetting Sn?



We begin to examine divergent SBI in detail, closing 
the gap between classical hydro and HED data
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D. Ranjan et al. Phys Fluids. 20, 036101 (2008). doi.org/10.1063/1.2840198D. Ranjan et al. Phys Fluids. 20, 036101 (2008). doi.org/10.1063/1.2840198

8.31 ns, 81429, XRFC 3

Mach Stem

Ring/lobe



Later time images are not as clear and require further 
interpretation
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D. Ranjan et al. Phys Fluids. 20, 036101 (2008). doi.org/10.1063/1.2840198D. Ranjan et al. Phys Fluids. 20, 036101 (2008). doi.org/10.1063/1.2840198

14.24 ns, 81431, XRFC 3

Slip 
surface

Vortex ring?Secondary 
vorticity?



Direct comparisons between xRAGE simulations and experiments 
show early time agreement and late time discrepancies
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Blue = shock contour Orange = void contour

● Simulations produced by B. M. Haines
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XRIPL is general enough to work on radiographs from 
other campaigns (COAX, Radishock)

COAX: Radiation flow 
across a boundary
COAX: Radiation flow 
across a boundary

Radishock: Radiation flow 
meets an opposing shock
Radishock: Radiation flow 
meets an opposing shock



XRIPL is general enough to work on radiographs from 
other campaigns (COAX, Radishock)

03/03/2021   |   26Los Alamos National Laboratory

Radishock 94789COAX 86456



Direct comparisons of shock curvature for COAX 
experiments and simulations show agreement
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Data
Simulation

86462, t = 2.3 ns 86456, t = 4.3 ns86459, t = 3.3 ns

● Cassio simulations were generated by H. F. Robey.
● Inline CBET for indirect drive experiment
● 0.6x laser drive multiplier
● Flux limiter 0.05
● Can quantitatively interrogate fine scale differences



Direct comparisons of shock curvature for Radishock 
experiments and simulations show agreement
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Data
Simulation

94795, t = 4.6 ns 96981, t = 6.6 ns 96990, t = 8.2 ns

● Cassio simulations were generated by H. F. Robey.
● Inline CBET for indirect drive experiment
● No laser drive multiplier
● Flux limiter 0.05
● Can quantitatively interrogate fine scale differences



We are beginning to capture secondary features such a 
Be wall inflow to further constrain simulations
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COAX 86456, t=4.3 ns



Conclusions
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• Computer vision techniques can clean and enhance images as well 
as extract 2D feature contours to track shocks, bubble, and 
secondary features over time

• Extraction of these 2D contours enables detailed tracking of 
interactions (Mach stem in SBI) and symmetries in the system

• 2D contours also enable direct, quantitative comparisons with 
simulations, where 1D analyses may yield incorrect interpretations

• There is a wealth of secondary features to further explore!



Backup Slides
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Intensity banding may occur for larger kernels – 
cleaning should be limited to smaller kernels
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● Here, a disk kernel 
with 10 pixel radius 
was used for 
morphological 
filtering

● Banding is apparent 
in flat intensity 
regions, though 
gradient regions 
exhibit less banding



Comparison of contrast equalization techniques 
showed pseudo-flatfield works best for our data
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